Tuesday: October 9		
	09:30 – 10:00	
	12:30 – 14:00	
	Registration of the participants	
Morning S	Session Chairs: R. Kostanyan, B. Kryzhanovsky	
10:00	Conference Opening: Welcome Talks Aram Papoyan, Director of IPR NAS Invited officials	
10:30	Nonlinear magneto-optical effects with cold rubidium atoms We present results of our latest experiments on magneto-optical effects in laser- cooled non-degenerate rubidium samples. Long coherence lifetimes enable us to observe narrow magneto-optical resonances suitable for precision magnetometry. <u>Adam Wojciechowski</u> , Krystian Sycz, Jerzy Zachorowski, Wojciech Gawlik Jagiellonian University, Poland	
11:00	N-resonance formation in micrometric-thin cells filled with Rb and buffer gas: splitting in strong magnetic field N-resonance excited in Rb vapor with neon gas addition confined in micrometric- thin cells is studied. Good contrast and narrow line-width are obtained for the 30 μm- thickness. The results of N-resonance splitting in strong magnetic field are presented. <u>D. Sarkisyan¹</u> , A. Sargsyan ¹ , R. Mirzoyan ^{1,2} , A.Papoyan ¹ ¹ Institute for Physical Research, Armenia ² Laboratoire Interdisciplinaire Carnot de Bourgogne, Université de Bourgogne, France	
11:30	Advantage of photoluminescence spectroscopy for characterization of different low-dimensional semiconductor materials The objective of presented article is to give an overview of photoluminescence spectroscopy as a characterization tool in the study of different low-dimensional semiconductor structures, i.e. atomically-thin layered crystals, quantum wells, and nanorods. <u>D. Dumcenco¹, H. P. Hsu², Y. P. Wang¹, C. H. Ho³, K. K. Tiong⁴, Y. S. Huang¹ ¹Department of Electronic Engineering, National Taiwan University of Science and Technology, Taiwan ²Ming Chi University of Technology, Taiwan ³Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taiwan ⁴National Taiwan Ocean University, Taiwan</u>	
,"1	12:00 – 13:30 Lunch & Coffee Break	

Afternoor	Session Chairs: D. Sarkisyan, C. Leroy
13:30	Effect of the electric field on optical parameters of a metal-dielectric-
	metal nanostructure
	We describe the results of studies of optical parameters for a waveguide silver-
	corundum-silver nanostructure. The variation (by a factor of three to five) of the
	reflection coefficient of the structure, which was dependent on the applied voltage
	In the range of 0-30 v is observed. The possible mechanisms of the revealed effect
	BV Kryzhanovsky ¹ A O Melikvan ² A N Palaaushkin ¹ S A Prokonenko ¹
	A.P. Seraeev ¹
	¹ Scientific Research Institute of System Development of the Russian Academy of
	Sciences, Russia
	² Russian-Armenian (Slavonic) State University, Armenia
14:00	Hyperfine Paschen-Back regime realized in Rb an Cs nanocells
	A simple and efficient scheme based on one-dimensional nano-cell filled with Rb
	and/or Cs and strong permanent ring magnet use allowed the observation of
	hyperfine Paschen-Back regime in external magnetic field of $5000-7000$ G.
	<u>A. Sargsyan</u> , G. Hakhamyan, C. Leroy, T. Pashayan-Leroy, A. Papoyan, D. Sarkisyan ¹
	¹ Institute for Physical Research, Armenia
	² Laboratoire Interdisciplinaire Carnot de Bourgogne, Université de Bourgogne,
	France
14:30-	Defect mode engineering in 1D photonic crystal to design spatial filter
15:00	A defect layer with transversely-varying indices is introduced in a 1D photonic
	crystal to design special filter. Such a layer causes to appear different transmission
	modes in band gap which is dependent on transverse direction.
	Kazem Jamshidi-Ghaleh, Farzaneh Bayat, Fatemeh Moslemi and Zahra
	Ebranimi Hamea
	Azarbaijan Shahiu Mauahi University, Tabriz, Iran
	16:00 Bus to the hotels

Wednesday: October 10	
Morning Session Chairs: Yu. Malakyan, R. Akhmedzhanov	
10:00	Probing electron structure and electron correlation by electron impact(e,2e) and (e,3e) ionization of atomic and molecular targets(e,2e) and (e,3e) experiments designate complete experiments, where the ejectedelectrons are detected in coincidence with the scattered electron. Our aim is tocalculate the multiply differential cross section of these processes by perturbativemethods.Boghos Bedros JoulakianUniversity of Lorraine, France
10:30	Splitting of the EIT-resonance in a strong magnetic field using a
	micrometric-thin cells filled with Rb and buffer gas Electromagnetically-Induced Transparency (EIT) process in Rb vapor with neon gas addition confined in micrometric-thin cells is studied. The results of EIT -resonance splitting into 5 components in strong longitudinal magnetic field up to 2000 Gauss are presented. <u><i>R. Mirzoyan</i>^{1,2}</u> , <i>A. Sargsyan</i> ¹ , <i>C. Leroy</i> ² , <i>Y. Pashayan-Leroy</i> ² , <i>D. Sarkisyan</i> ¹ ¹ Institute for Physical Research, Armenia ² Laboratoire Interdisciplinaire Carnot de Bourgogne, Université de Bourgogne, France
11:00	Photoluminescence properties of Cu ₂ O nanostructured thin films The photoluminescence bands at 1.35eV, 1.69eV and 1.88eV well below the band- gap of nanocrystalline Cu ₂ O were observed under CW laser excitation, at room temperature. We discuss the origin of this room temperature photoluminescence. <u>Anna Reymers</u> ¹ , Vladimir Gevorgyan ¹ , Suzanne Giorgio ² , Artak Karapetyan ^{2,3} , Wladimir Marine ² ¹ Russian-Armenian (Slavonic) University, Armenia ² Aix Marseille Université, CNRS, France ³ Institute for Physical Research, Armenia
11:30	The influence of retardation and radiation damping on the spectrum of surface plasmons in metallic nanoparticles We propose an approach for the calculation of radiation damping effects in surface plasmon spectra in spherical and spheroidal nanoparticles, core-shell particles, coupled nanospheres and sphere near interface. <u>K. Madoyan¹, A. Melikyan¹, H. Minasyan²</u> ¹ Russian-Armenian (Slavonic) University, Armenia ² A. I. Alikhanyan National Science Laboratory, Armenia
[1]	12:00 – 13:30 Lunch & Coffee Break

Afternoon Session Chairs: G. Grigoryan, A. Ishkhanyan	
13:30	Ultrashort pulse amplification in the induced optical anisotropic
	medium
	The coherent response accumulation method is used to assess the ability to
	amplify the polarization rotated component of a probe beam about two-photon
	resonance conditions
	<u>Mariam H. Hovhannisyan</u> , Atom Zh. Muradyan
	Yerevan State University, Armenia
14:00	Ultrabroadband biphotons in chirped photonic crystals
	Generation of biphoton wave-packets with ultrabroadband spectra are proposed
	for linearly chirped quasi-phase-matching configurations involving nonlinear
	photonic crystals.
	<u>A.R. Tamazyan</u> ^{1,2} , G.Yu. Kryuchkyan ^{1,2}
	Institute for Physical Research, Armenia
	² Yerevan State University, Armenia
14:30–	Web portal using grid in areas of photonics and quantum information
15:00	A Web Portal in areas of photonics and quantum information is introduced by
	using computational Grid infrastructures. The applications for quantum
	engineering are illustrated.
	Hrachya Astsatryan , <u>Tigran Gevorgyan</u> , Anna Shahinyan , Gagik
	Kryuchkyan ^{-v}
	Institute for Informatics and Automation Problems, Armenia
	Institute for Physical Research, Armenia
	Yerevan State University, Armenia
	16:00 Bus to the hotels
<u> </u>	

Thursday: October 11

10:00 – 13:30 POSTER SESSION

For the list of posters please refer to pp. 8–14.

13:30 – 14:30 Lunch & Coffee Break

14:30 → Sightseeing Tour

Friday: October 12	
Morning	Session Chairs: A. Petrosyan, A. Wojciechowski
10:00	High momentum splitting of matter-waves by an atom chip field gradient
	beam splitter
	The splitting of matter-waves into a superposition of spatially separated states is a
	fundamental tool for studying the basic tenets of quantum mechanics and other
	theories, as well as a building block for numerous technological applications. We
	report the realization of a matter-wave beam splitter based on magnetic field
	gradients on an atom cnip, which can be used for freely propagating or trapped atoms
	III d BOSE-EIIIStelli condensate of a chemidi state. The beam spinter incorporates
	Stern-Gerlach interactions.
	Shimon Machluf. Yonathan Japha. Ron Folman
	Ben-Gurion University, Israel
10:30	Experimental demonstration of qubit-qubit interaction and effective regime
	of EIT in Pr ³⁺ :LaF ₃ crystal
	Institute of Applied Physics of the Russian Academy of Sciences, Russia
	The effective regime of EIT based on spectral selection is realized experimentally in
	the Pr ³ :LaF ₃ crystal. The possibility of implementing qubits on ensembles of spectrally
	selected particles and the main operations with them is demonstrated.
	<u>R.A. Akhmedzhanov</u> , A.A. Bondartsev, L.A. Gusnchin, A.G. Litvak, I.v. Zelensky
11.00	Institute of Applied Physics of the Russian Academy of Sciences, Russia
11:00	Photon echoes from atomic frequency comb in Pr :LaF ₃ crystal
	The results of experimental study of atomic frequency comp based quantum optical moment in Pr ³⁺ d a crystal are presented. The povel technique for control the
	memory storage time by external electric field is proposed and experimentally
	investigated.
	R.A. Akhmedzhanov, <u>A.A. Bondartsev</u> , L.A. Gushchin, A.G. Litvak, I.V. Zelensky
	Institute of Applied Physics of the Russian Academy of Sciences, Russia
11:30	GHz photon detector
	Principles of a new photon detector, based on the 1 GHz radio frequency
	photomultiplier tube are proposed.
	<u>A. Margaryan</u> [*] , R. Ajvazyan [*] , S. Zhamkochyan [*] , J. Annand [*]
	² A. I. Alikhanyan National Science Laboratory, Armenia
	University of Glasgow, Scotland, UK
["1]	12:00 – 13:30 Lunch & Coffee Break

Afternoon Session Chairs: A. Melikyan, R. Folman		
13:30 Formation of a single-photon 0π pulse within a hollow fiber		
	We investigate the reshaping of a single-photon pulse to 0π pulse due to its passage	
	through cold Λ -type atoms inside a hollow core of single-mode photonic-crystal fiber.	
	The temporal entanglement of outgoing photon is found.	
	Sh. Petrosyan ¹ , <u>Yu. Malakyan^{1,2}</u>	
	¹ Institute for Physical Research, Armenia	
	² Yerevan State University, Armenia	
14:00	All-optical four-bit Toffoli gate with possible implementation in solids	
	We examine in detail the cyclic adiabatic population transfer methods for five-level	
	diagrams in order to construct a four-bit universal reversible logic gate. We show that	
	under certain conditions and sequence of turning on and off the laser pulses a five-	
	level system may be reduced to an effective Λ -diagram.	
	<u>G. Grigoryan</u> , V. Chaltykyan, E. Gazazyan	
	Institute for Physical Research, Armenia	
14:30	Long-range coupling of single atoms mediated by metallic nano-wires and	
	metamaterials	
	We show ways to entangle single atoms and build deterministic phase gates by	
	creating long-range, material-mediated interaction between the atoms. As interaction	
	mediators, we use metallic nanowires and negative refractive index materials.	
	David Dzsotjan, Michael Fleischhauer	
	² Wigner RCP of the Hungarian Academy of Sciences, Budapest, Hungary	
	TU Kaiserslautern, Kaiserslautern, Germany	
15:00	Generalized Rosen-Zener two-state term-crossing model	
	The two-state problem for a rich family of amplitude- and phase-modulated pulses	
	involving both non-crossing and term-crossing models with one or two crossings is	
	analyzed. The model includes the original constant-detuning Rosen-Zener model as a	
	particular case.	
	A.M. ISNKNANYAN	
	Institute for Physical Research, Armenia	
15:30	Conference closing	
	16:30 Bus to the hotels	

	Poster Presentations
1	Microstructure and elemental composition of the CuO/Ag ceramics before
	and after laser irradiation
	The influence of the third harmonic of YAG:Nd ³⁺ laser on the microstructure and
	elemental composition of CuO and CuO/Ag ceramic samples heat-treated under
	different conditions is studied.
	<u>V.A. Kuzanyan</u> , S.T. Pashayan, A.S. Kuzanyan
	Institute for Physical Research, Armenia
2	Opportunity to maximize the utilization of the target material in the method
	of pulsed laser deposition
	A method of creating a laser spot of a specific configuration on the target, allowing
	almost a full utilization of the target material, is proposed.
	<u>A.A. Kuzanyan</u> , V.A. Petrosyan, A.S. Kuzanyan
	Institute for Physical Research, Armenia
3	Influence of synthesis conditions and laser radiation on electroconductivity of
	CuO/Ag ceramics
	The results of influence of various heat treatments and laser pulse radiation (20 ns) on
	CuO and CuO/Ag samples temperature dependence of the resistivity and the activation
	energy of the resistance are presented.
	<u>S. Pashayan</u> , V. Tatoyan, A. Kuzanyan Jertituta fan Dhusiael Desearch, Amannia
4	Institute for Physical Research, Armenia
4	Detection of glucose high-concentration induced changes on morphology of
	red blood cell membrane using optical trapping and digital holography
	we investigate morphological changes of Red Blood Cell membrane that are induced by high glucose level in buffer by using the combination of the optical transing and Digital
	Holographic Microscopy techniques
	Abdorahim Tayakoli ¹ Ali-Reza Moradi ^{1,2}
	¹ University of Zanian Iran
	² Ontics Research Center, Institute for Advanced Studies in Basic Sciences, Zanian, Iran
5	The dark current-voltage characteristics of BST/SiO ₂ /Si heterostructures
5	prepared by pulsed laser deposition
	Investigated the current-voltage characteristics and optical properties of the
	heterostructure BST/SiO $_2$ /Si, obtained by pulsed laser deposition. Founded that the
	direct branch of the characteristic is determined by the power law.
	Harutyun Dashtoyan
	State Engineering University of Armenia

6	Investigation of non-reciprocal transmission of light through cholrsteric liquid
	crystal single layer
	We observe diode-like action of single CLC layer with $20\mu m$ thickness. The sample shows
	Non-Reciprocity of transmission for light with Circular polarization. LCP Light transmits
	through the sample without loses, while RCP light has low transmission. Unpolarized
	light transmission from described side is the same as transmission from the other side of
	the sample for RCP, LCP and Unpolarized Light.
	<u>S.I. Hovhannisyan</u> , T.K. Dadalyan, R.B. Alaverdyan, A.S. Karapetyan
	Yerevan State University, Armenia
7	Investigation of spectral characteristics of CLC layer disturbed by periodic
	mechanical oscillations
	We measure transmission, reflection and luminescence spectra of CLC and dye doped
	CLC, which is disturbed by mechanical vibrations. Measurements are carried out at
	various conditions for finding a method of tunability of spectral characteristics.
	<u>A. Khachatryan</u> , T.K. Dadalyan, R.B. Alaverdyan
	Yerevan State University, Armenia
8	Investigation of the second reflection band appearing in the CLC single layer
	reflection spectrum
	We observe two reflection bands in the CLC single layer reflection spectrum shifted ~180
	nm respect to each other. Both bands show temperature and electromagnetic tunability.
	We investigate this phenomenon for its possible practical applications.
	<u>T.K. Dadalyan</u> , R.B. Alaverdyan, T.S. Hovhannisyan, S.I. Hovhannsiyan, A.S.
	Karapetyan
	Yerevan State University, Armenia
9	Direct interband light absorption in the ensemble of cylindrical quantum dots
	with modified Pöschel-Teller potential
	Analytical expressions for the particle energy spectrum, absorption coefficient and
	dependencies of effective threshold frequencies of absorption on the geometrical sizes
	of quantum dot are considered for the regime of strong size quantization.
	D.B. Hayrapetyan ^{1,2} , E.M. Kazaryan ¹ , <u>H.Kh. Tevosyan</u> ¹
	² Russian-Armenian (Slavonic) State University, Armenia
	² State Engineering University of Armenia, Armenia
10	Fabrication and analysis of the Cu(In_xGa_{1-x})Se ₂ , Cu(In_xGa_{1-x})S ₂ and CuIn(S_xSe_{1-x}) ₂
	nanocrystals
	We synthesized various quaternary $Cu(In_xGa_{1-x})Se_2$, $Cu(In_xGa_{1-x})S_2$ and $CuIn(S_xSe_{1-x})_2$
	$(0 \le x \le 1)$ chalcopyrite nanoparticles in oleylamine and tetraethylene glycol by polyol
	route using copper, indium, gallium salts, S and Se powder for solar cell materials.
	Hadi Zarei [®] , Rasoul Malekfar [®] , Hossein Movla ^e
	¹ Tarbiat Modares University, Iran
	⁻ University of Tabriz, Tabriz, Iran

11	Thin film field effect transistor based on ferroelectric-semiconductor
	heterostructure
	We report the investigation of heterostructures based on ferroelectric crystal and semiconductor film: LiNbO ₃ –ZnO:Li and TGS–ZnO:Li. Based on ferroelectric - field effect transistor heterostructure a new type of pyroelectric IR photodetector with high sensitivity and detectability has been developed.
	A.R. Poahosvan, N.R.Aahamalvan, T.A. Aslanvan, E.S. Vardanvan, E.A.
	Kafadarvan, R.K.Hovsepvan, S.I.Petrosvan
	Institute for Physical Research, Armenia
12	Metal-insulator electronic phase transitions in wide gap ZnO semiconductors
	Metal–insulator electronic phase transitions in wide gap ZnO semiconductors have been studied. The peculiarities of this transition in ZnO films doped by donor or acceptor impurity and the influence of mentioned defect complex on the charge carrier transfer mechanism were investigated. <u>R.K. Hovsepyan</u> , N.R. Aghamalyan, T.A. Aslanyan, E.S. Vardanyan, Y.A.
	Kafadaryan,, S.I. Petrosyan, A.R. Poghosyan
10	Institute for Physical Research, Armenia
13	Structural and electrical properties of thin lanthanum oxide films grown by
	annealing of lanthanum hexaboride in oxygen
	In this study, the lanthanum oxide thin films have been grown by annealing of the
	animanum nexaboride (LaB ₆) tims at high temperatures (400–700 C) in oxygen environment. The ontimum grown parameters are developed, and the L-V and C-V
	characteristics also are investigated.
	N. Aahamalvan, G. Badalvan, A. Eaanvan, J. Gambarvan, R. Hovsepvan.
	A. laitvan, V. Lazarvan, Y. Kafadarvan, S. Petrosvan, A. Kuzanvan
	Institute for Physical Research, Armenia
14	Measurement of reflectivity of bonded interface in microchip laser cavity
	using scanning interferometry
	A method of determination of reflectivity of interface between two optically bonded
	parallel plates is presented. This system is treated as a 3-mirror scanning Fabry-Perot
	interferometer. Analysis of its temperature response gives reflectivity of interface.
	<u>M. Kerobyan</u> ^{1,2} , A. Gyulasaryan ² , S. Soghomonyan ²
	¹ Institute for Physical Research, Armenia
	⁻ Spectralus CJSC, Armenia
15	Dimensional distribution of green up-conversion emission in PbMoO ₄ :Er
	crystals: effect of excitation displacement
	Analysis of the dimensional distribution of up-conversion green luminescence is carried
	N R Aahamalvan ¹ G G Demirkhanvan ^{1,2} R K Hovsenvan ¹ R R Kostanvan ¹
	D G Zaraarvan ¹
	¹ Institute for Physical Research, Armenia
	² Armenian State Pedagogical University, Armenia

16	Investigation of output power of copper vapor laser (CVL) using copper
	coating mirror and measuring the temperature profile using LIBS method
	We investigated copper vapor laser's output performance for different coating of cavity
	mirrors. Laser-induced breakdown spectroscopy (LIBS) method has been used for this
	study.
	<u>Mitra Namnabat</u> ² , Saeid Behrooziniya ¹ , Maryam Gheshlaghy ¹ , Kamran
	Khorasany ¹ , Ali-Reza Moradi ²
	¹ Laser and optics Research Institute, Tehran, Iran
	² University of Zanjan, Iran
17	Внутризонные переходы в пленке InSb в присутствии электростатического
	поля
	Рассмотрены переходы из подзоны тяжелых и легких дырок. Приведены графики
	зависимости переходов от напряженности внешнего поля.
	<u>В.А. Гаспарян</u>
	Российско-Армянский (Славянский) Университет, Армения
18	Synthesis of ZnO nanoparticle by precipitation method
	In this research, ZnO nanoparticles were produced with precipitation method by using
	different concentration of zinc acetate in ethanol/methanol as organic solvents. The
	average sizes of nanoparticle products were between 22–55 nanometer.
	<u>Marzieh Nadafan</u> ¹ , Ali Izadi Darbandi [*] , Rasoul Malekfar ¹ , Zahra Dehghani [*]
	Tarbiat Modares University, Iran
	² University of Tehran, Iran
19	Synthesizeation of amorphous cordierite glass-ceramic powders
	In this research we prepared amorphic 2Mg.2Al ₂ O ₃ .5SiO ₂ glass-ceramic nano powder
	with three various methods; Pechini, solution combustion synthesis with flame and
	without flame. 1^{2}
	<u>Marzieh Nadafan</u> , Rasoul Malekfar , Ali Izadi Darbandi , Zahra Dehghani , Hadi
	Zarei
	Tarbiat Modares University, Iran
	University of Tehran, Iran
20	Specific features of electronic states in a cylindrical surface of finite thickness
	with vertical potential of confinement
	A new model of confinement potential for cylindrical nanolayer is introduced. Given that
	layer's thickness is much smaller than radius of cylinder, the single electron wave
	tunctions and energy spectrum are defined in adiabatic approximation. <u>S.L.</u>
	<u>Harutyunyan</u> [*] , H.G. Demirtshyan [*]
	⁻ State Engineering University of Armenia, Armenia
	Gyumri State Pedagogical Institute, Armenia

21	Growth and studies of mixed (Lu,Y) ₃ Al ₅ O ₁₂ :Ce scintillator crystals
	$(Lu_{1-x}Y_x)_3Al_5O_{12}$: Ce solid solutions ($0 \le x \le 1$) were grown and characterized in terms of
	actual Ce and Y concentrations. Spectral line shifts (f-d transitions of Ce ³⁺) with crystal
	composition were registered. Scintillation parameters of solid solution crystals (x = 0.2)
	were compared with those of LuAG:Ce.
	<u>K.L. Ovanesyan¹</u> , G.R. Badalyan ¹ , A. Yeganyan ¹ , A.G. Petrosyan ¹ , A. Belsky ² , C.
	Dujardin ² , E. Auffray ³ , P. Lecoq ³ , K. Pauwells ³ , N. Di Vara ³
	¹ Institute for Physical Research, Armenia
	² Université de Lyon, France,
	³ European Organization for Nuclear Research, CERN, Switzerland
22	Entanglement and thermodynamic properties of three coupled atoms
	The entanglement properties of the Dicke model in a dispersive limit are compared with
	its thermodynamic features. Two regimes depending on the sign of the effective
	coupling constant are revealed.
	<u>L. Chakhmakhchyan</u> ^{1,2} , S. Guérin ¹ , C. Leroy ¹ , N. Ananikian ³
	¹ Laboratoire Interdisciplinaire Carnot de Bourgogne, Université de Bourgogne, France
	² Institute for Physical Research, Armenia
	³ A. I. Alikhanyan National Science Laboratory, Armenia
23	New relations for the derivative of the confluent Heun function
	The cases when the derivative of the confluent Heun function is expressed in terms of
	another confluent Heun function are examined. It is shown that this occurs only for
	three specific sets of involved parameters.
	V.A. Shahnazaryan ¹ , A.A. Movsesyan ² , S.P. Stepanyan ³ , A.M. Ishkhanyan ⁴
	¹ Russian-Armenian (Slavonic) University, Armenia
	² Armenian State Pedagogical University, Armenia
	Yerevan State University, Armenia
	Institute for Physical Research, Armenia
24	Complete-return spectrum for a generalized Rosen-Zener two-state term-
	crossing model
	We present an analytical description of the complete-return resonances for a two-level
	atom interacting with an optical field defined by the Rosen-Zener model which defines
	both non-crossing and term-crossing processes with one or two crossing points. T. Chabasanda m^2 (1) Asiababasang 2 Chapasa 3 A table manage
	<u>I. Snanverayan , H. Azizbekyan ,</u> C. Leroy , A. Isnknanyan
	Moscow Institute of Physics and Technology, Russia
	Institute for Physical Research, Armenia ³ aboratoire Interdisciplinaire Carpet de Bourgegne, Université de Bourgegne, France
25	A wave function presentation and its normalization condition for a particle
25	A wave function presentation and its normalization condition for a particle
	A connection between the normalization condition and a wave function representation
	for an arbitrary and a snace infinite one-dimensional motion is discussed
	Λ 7 h Khachatrian ¹ N A Alaksanyan ² V A Khachatrian ¹
	<u>A.211. Muchaunan</u> , N.A. Aleksanyan, V.A. Midecyan ¹ State Engineering University of Armenia
	² Artsakh State University

26	Mathematical modeling for calculating energy of electrons in laser material
	interactions
	By using Kepler's law on Sommerfeld modification of Bohr atomic structure with an
	electron trajectory at the cavity created in a laser material interaction due to bubble
	regime, found a better description of ellipsoid model.
	<u>Sajjad Heidari</u> ¹ , Kazem Jamshidi-Ghaleh ² , Hossein Masalehdan ^{1,2}
	¹ Islamic Azad University, Bonab, Iran
	² Azarbaijan Shahid Madani University, Tabriz, Iran
27	Phase control of the nonlinear magneto-optical rotation in a GaAs quantum
	well waveguide
	We control the nonlinear magneto-optical rotation (NMOR) in a GaAs quantum well
	waveguide via relative phase between driving fields and obtain considerable absorption-
	free NMOR, accompanied by a maximum intensity of y-component of the transmitted
	field.
	<u>Mohsen Ghaderi</u> ¹ , Ali Mortezapour ² , Mohammad Mahmoudi ¹
	¹ University of Zanjan, Iran
	² Institute for Advanced Studies in Basic Science (IASBS), Zanjan, Iran
28	Collision of atoms under action of external magnetic and laser radiation fields
	with formation of Fano–Feshbach resonances
	We investigate collision of two atoms in external magnetic field and in the field of laser
	radiation with formation of Fano–Feshbach resonances. The cross-sections of elastic and
	inelastic resonant scattering and expression for the scattering length depending on the
	external magnetic and laser radiation fields are obtain.
	<u>E.A. Gazazyan</u> , A.D. Gazazyan, V.O. Chaltykyan
	Institute for Physical Research, Armenia
29	Director reorientation in the nematic liquid crystal due to the light beam
	absorption
	This study shows that the absorbed energy from a laser light could provide the required
	energy for the fluid flow and the director reorientation of the NLC.
	J.B. Poursamad ¹ , <u>F. Nayyeri</u> ¹ , V. Abediny ¹ , M. Sahrai ²
	¹ University of Bonab, Iran
	² University of Tabriz, Iran
30	Shallow donor states near a semiconductor-metal interface in perpendicular
	magnetic field
	In this paper we investigate the energy spectrum of a shallow donor near a
	semiconductor-metal interface in the presence of a magnetic field perpendicular to the
	interface using 1) the "numerically exact" finite element method, and 2) a variational
	approach
	<u>A. A. Avetisyan</u> ¹ , A. P. Djotyan ¹ , Bin Li ² , F. M. Peeters ²
	Yerevan State University, Armenia
	⁴ Universiteit Antwerpen, Belgium

31	Theoretical study of the third type of thermomechanical effect in a radial cell
	of nematic liquid crystal
	This presentation is about the third type thermomechanical effect in the radial cell of
	nematic liquid crystal. Director equation has been solved numerically and coefficient of
	nonlinearity has been obtained.
	<u>A.K. Aleksanyan</u> , R.S. Hakobyan
	Yerevan State University, Armenia
32	Thermomechanical mechanism of orientational optical nonlinearity in radial
	nematic liquid crystal structure
	In this presentation dynamic of director has been discussed theoretically in radial
	nematic liquid crystal structure for the first time.
	<u>A.K. Aleksonyon</u>
22	Phase and emplitude control of entired histohility in the closed loop three
33	Phase and amplitude control of optical distability in the closed-loop three-
	In this paper, we investigate the ontical properties of a weak probe field in a closed-loop
	ladder-type configuration in an asymmetric semiconductor three-coupled quantum well
	system.
	M. Mahmoudi and N. Heidari
	University of Zanian. Iran
34	Nonlinear optical response of a parabolic semiconductor quantum dot
51	In this work, using the compact density matrix formalism, linear and nonlinear optical
	absorption based on the lowest exciton states are obtained in the model parabolic
	semiconductor quantum dot. Also, we will consider the effect of applied electric field.
	<u>Reza Safari</u> ¹ , Saeid Shojaei ²
	¹ Ahar branch-Islamic Azad university, Iran
	² Research institute for Applied Physics & Astronomy, University of Tabriz, Iran
35	Investigation of spectral characteristics of chiral photonic structure with laser
	dye-doped isotropic polymer film
	We study spectral characteristics of a system consisting of two CLC layers and a laser dye
	doped polymeric film sandwiched between them. We measure transmission, reflection
	and luminescence spectra of a system at various temperatures. Maximal intensity of
	luminescence spectrum at constant pumping power is observed at 10 C and the weakest
	temperatures are "confined" hetween these two spectra at higher and lower
	TM Hoyhannisvan TK Dadalvan RB Alayerdvan AS Karanetvan
	Yerevan State University, Armenia
26	Hyperfine Paschen-Back regime realized in Cs nanocells: Experimental results
50	and theoretical consideration
	Theoretical curves for Cs. D2 line atomic transitions frequencies shifts as well as the
	modification of atomic transitions probabilities (line intensities) have been calculated for
	the range of magnetic field of 2 kG $-$ 7 kG.
	A. Sargsyan ² , G. Hakhumyan ² , <u>C. Leroy¹</u> , Y. Pashayan-Leroy ¹ , D. Sarkisyan ²
	¹ Laboratoire Interdisciplinaire Carnot de Bourgogne, Université de Bourgogne, France
	² Institute for Physical Research, Armenia